Graphene ballistic nano-rectifier with very high responsivity
نویسندگان
چکیده
Although graphene has the longest mean free path of carriers of any known electronic material, very few novel devices have been reported to harness this extraordinary property. Here we demonstrate a ballistic nano-rectifier fabricated by creating an asymmetric cross-junction in single-layer graphene sandwiched between boron nitride flakes. A mobility ∼200,000 cm(2) V(-1) s(-1) is achieved at room temperature, well beyond that required for ballistic transport. This enables a voltage responsivity as high as 23,000 mV mW(-1) with a low-frequency input signal. Taking advantage of the output channels being orthogonal to the input terminals, the noise is found to be not strongly influenced by the input. Hence, the corresponding noise-equivalent power is as low as 0.64 pW Hz(-1/2). Such performance is even comparable to superconducting bolometers, which however need to operate at cryogenic temperatures. Furthermore, output oscillations are observed at low temperatures, the period of which agrees with the lateral size quantization.
منابع مشابه
High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection.
Graphene is an attractive photoconductive material for optical detection due to its broad absorption spectrum and ultrashort response time. However, it remains a great challenge to achieve high responsivity in graphene detectors because of graphene's weak optical absorption (only 2.3% in the monolayer graphene sheet) and short photocarrier lifetime (<1 ps). Here we show that metallic antenna st...
متن کاملSimulation of IR Detector at Communication Window of 1550nm based on Graphene
In this paper, photodetection properties of a Graphene-based device at the third telecommunication window have been reported. The structure of the device is a Graphene-silicon Schottky junction which has been simulated in the form of an infrared photodetector. Graphene has specific electrical and optical properties which makes this material a good candidate for optoelectronic applications. Phot...
متن کاملDirect nanoscale imaging of ballistic and diffusive thermal transport in graphene nanostructures.
We report direct imaging of nanoscale thermal transport in single and few-layer graphene with approximately 50 nm lateral resolution using high vacuum scanning thermal microscopy. We observed increased heat transport in suspended graphene where heat is conducted by ballistic phonons, compared to adjacent areas of supported graphene, and observed decreasing thermal conductance of supported graph...
متن کاملBallistic nano-devices for high frequency applications
In this paper, we present a study on three-terminal ballistic junction and their applications to rectifiers and MUX/DEMUX. Rectifying effect is observed up to 94 GHz at room temperature. Although THz frequency performance has been demonstrated by Monte Carlo simulation, the high impedance of the nano-device combined with the parasitic capacitances is a limiting factor. © 2006 Published by Elsev...
متن کاملElectron-beam induced nano-etching of suspended graphene
Besides its interesting physical properties, graphene as a two-dimensional lattice of carbon atoms promises to realize devices with exceptional electronic properties, where freely suspended graphene without contact to any substrate is the ultimate, truly two-dimensional system. The practical realization of nano-devices from suspended graphene, however, relies heavily on finding a structuring me...
متن کامل